Product Code Database
Example Keywords: super mario -take $78-184
   » » Wiki: Cable Bacteria
Tag Wiki 'Cable Bacteria'.
Tag

Cable bacteria are filamentous that conduct electricity across distances over 1 cm in sediment and groundwater aquifers. Cable bacteria allow for long-distance electron transport, which connects electron donors to electron acceptors, connecting previously separated oxidation and reduction reactions. Cable bacteria couple the reduction of oxygen or nitrate at the sediment's surface to the oxidation of sulfide in the deeper, anoxic, sediment layers.


Discovery
Long-distance electrical conductance in sediment was first observed in 2010 as a spatial separation of sulfide oxidation and oxygen reduction in marine sediment that was interrupted and re-established at a rate faster than could be explained by chemical diffusion. It was later found that this electrical conductance could be observed across a non-conductive layer of glass microspheres, where the only possible conductive structures were filamentous bacteria belonging to the family .

The conductivity of single, live filaments was later demonstrated by observing the oxidation state of using . The same phenomenon was later observed in freshwater sediments and groundwater aquifers. Within a 15 cm thick top layer of sediment, cable bacteria densities providing total length of up to 2 km per square centimeter of surface have been observed.


Morphology
Cable bacteria filaments have a diameter of 1–4 μm and lengths of over 1 cm. The individual cells in the filaments are rod-shaped with an average length of 3 μm. As Gram-negative bacteria, they have two cell-enveloping membranes, with each cell having its own individual inner cell membrane, but the outer cell membrane is shared by all cells in a filament. In the common periplasm there are around 15–60 electron-conducting fibers with a diameter of around 50 nm, which are visible from the outside as parallel, longitudinal ribs. They consist of proteins that are rich in nickel and sulfur, are electrically insulated, and run the entire length of the cell filament.


Distribution
Cable bacteria are generally found in reduced sediments. They can be present as a single filament or as an agglomeration of filaments. Cable bacteria have been identified as being intertwined with the root hairs of aquatic plants and are present in the rhizosphere. Their distribution ranges a gradient of salinities; they are present in freshwater, saltwater lakes, and marine habitats. Cable bacteria have been identified in a diverse range of climatic conditions worldwide, including , the , , , and the . sp. |300x300px]]


Motility
Cable bacteria lack flagella, but are capable of in the form of gliding by propelling themselves forward through the excretion of substances. Cable bacteria have been observed to move as fast as 2.2 μm/s, with an average speed of 0.5 μm/s. Speed of motility in cable bacteria is not related to size of the bacteria. The average distance a cable bacterium glides is approximately 74 μm without interruption.

Cable bacteria filaments tend to bend in half, and their movement is led by the apex of the bend as opposed to leading with one tip of the filament. Twisting to move through rotational gliding is rare, but does occur.

Cable bacteria likely engage in oxygen , as they are observed to move when in anoxic or hypoxic environments, and cease gliding when contact with oxygen is made. Although motility is important for other microorganisms, once cable bacteria are located in a place that connects oxygen to sulfide, they no longer need to move. The reduced need for motility could explain why the cable bacteria genome contains fewer operons related to chemotaxis than other .


Taxonomy
The two candidate genera of cable bacteria until now described: containing four candidate species, found in marine or brackish sediments, and containing two candidate species, found in freshwater sediments, seem to be a monophyletic group. In 2025 the Electrothrix genera has added newly described Electrothrix yaqonensis specie.

Freshwater and marine cable bacteria have been found to be 88% similar based on 16S ribosomal RNA comparisons. These genera are classified within the family , phylum . Cable bacteria are defined by their function rather than their phylogeny, and it is possible that further cable bacteria taxa will be discovered.


Ecological significance
Cable bacteria strongly influence the geochemical properties of the surrounding environment. Their activity promotes the oxidation of at the surface of the sediment, and the resulting iron oxides bind phosphorus-containing compounds and hydrogen sulfide, limiting the amount of and in the water. Phosphorus can cause , and can be toxic to marine life, meaning that cable bacteria play an important role in maintaining marine ecosystems in coastal areas.

The presence of cable bacteria can lead to a decrease in methane emissions from saturated soils. The transfer of electrons through cable bacteria allows the sulfate reduction that occurs in inundated soils to be balanced by sulfide oxidation. Oxidation is possible because of the release of electrons through the cable bacteria filaments. Through this balance, sulfate remains readily available for sulfate reducing bacteria, which out compete This causes a decrease in production of methane by methanogens.


Practical applications
Cable bacteria have been found associated with benthic microbial fuel cells, devices that convert chemical energy on the ocean floor to electrical energy. In the future, cable bacteria may play a role in increasing the efficiency of microbial fuel cells deployed in sedimentary environments. Cable bacteria have also been found associated with a bioelectrochemical system that enhances the degradation of marine sediment contaminated by hydrocarbons and thus may play a role in future cleanup technologies.


See also
  • Biodegradable electronics
  • Electric bacteria


External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time